Mapping Rice Seasonality in the Mekong Delta with Multi-Year Envisat ASAR WSM Data

نویسندگان

  • Duy Ba Nguyen
  • Kersten Clauss
  • Senmao Cao
  • Vahid Naeimi
  • Claudia Kuenzer
  • Wolfgang Wagner
چکیده

Rice is the most important food crop in Asia, and the timely mapping and monitoring of paddy rice fields subsequently emerged as an important task in the context of food security and modelling of greenhouse gas emissions. Rice growth has a distinct influence on Synthetic Aperture Radar (SAR) backscatter images, and time-series analysis of C-band images has been successfully employed to map rice fields. The poor data availability on regional scales is a major drawback of this method. We devised an approach to classify paddy rice with the use of all available Envisat ASAR WSM (Advanced Synthetic Aperture Radar Wide Swath Mode) data for our study area, the Mekong Delta in Vietnam. We used regression-based incidence angle normalization and temporal averaging to combine acquisitions from multiple tracks and years. A crop phenology-based classifier has been applied to this time series to detect single-, doubleand triple-cropped rice areas (one to three harvests per year), as well as dates and lengths of growing seasons. Our classification has an overall accuracy of 85.3% and a kappa coefficient of 0.74 compared to a reference dataset and correlates highly with official rice area statistics at the provincial level (R2 of 0.98). SAR-based time-series analysis allows accurate mapping and monitoring of rice areas even under adverse atmospheric conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flood Mapping and Flood Dynamics of the Mekong Delta: ENVISAT-ASAR-WSM Based Time Series Analyses

Satellite remote sensing is a valuable tool for monitoring flooding. Microwave sensors are especially appropriate instruments, as they allow the differentiation of inundated from non-inundated areas, regardless of levels of solar illumination or frequency of cloud cover in regions experiencing substantial rainy seasons. In the current study we present the longest synthetic aperture radar-based ...

متن کامل

Rice Monitoring Using ENVISAT ASAR Data: Preliminary Results of a Case Study in the Mekong River Delta, Vietnam

ABSTRACT: Vietnam is one of the world’s largest rice exporting countries, and the fertile Mekong River Delta at the southern tip of Vietnam accounts for more than half of the country’s rice production. Unfortunately, a large part of rice crop growing time coincides with a rainy season, resulting in a limited number of cloud-free optical remote sensing images for rice monitoring. Synthetic apert...

متن کامل

Varying Scale and Capability of Envisat ASAR-WSM, TerraSAR-X Scansar and TerraSAR-X Stripmap Data to Assess Urban Flood Situations: A Case Study of the Mekong Delta in Can Tho Province

Earth Observation is a powerful tool for the detection of floods. Microwave sensors are typically favored as they deliver data enabling water detection independent of solar illumination or cloud cover conditions. However, scale issues play an important role in radar based flood mapping. Depending on the flood related phenomenon under investigation, some sensors might be more suitable than other...

متن کامل

Supervised Wishart Classifier for Rice Mapping Using Multi-temporal Envisat Asar Aps Data

For the operational application of multi-temporal ENVISAT ASAR APS data to rice mapping, a complex Wishart distribution based multi-temporal classifier was evaluated in this paper. The classification accuracy of this classifier was quantitatively compared with commonly used classifiers for optical remote sensing image classification including maximum likelihood classifier and minimum euclidean ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015